RESEARCHED AND COMPILED BY:
ROBERT S. HARDT
NUTRI-EPIGENETIC BIOCHEMICAL ANALYST

“Let your food be thy medicine!.... Hippocrates

CONTACT INFORMATION
ROBERTHARDT@YAHOO.COM
1-310-398-4011

2-18-2014 COPYRIGHT 5-2-2014

CONSPIRACY OR A SIMPLIFIED AND BRIEF 3 PART STEP IN GLOBAL HUMAN AND ANIMAL FOOD CHAIN DOMINANCE

1.) TRYPOTOPHAN DEPLETION AND ALL ESSENTIAL MINERAL MICRONUTRIENTS BY BIO-TECH GIANT MONSANTO AND OTHERS = TRYPOTOPHAN (EPSPS) PATENTS CREATE SICKNESSES AND DISEASES THEN MAKE MONEY OFF THE CONTRACTED SALE OF THE TRYP GMO GENETICALLY IMPROVED PRODUCTS!
Figure 1.2. The site of inhibition of glyphosate from Dill (2005).
Figure 2. Illustration of tryptophan pathways in the body and the adverse effect of glyphosate on tryptophan bioavailability. IDO: indole amine dioxygenase; TDO: Tryptophan dioxygenase; G: glyphosate.
Glyphosate: Some Biological Effects

- Depletes aromatic amino acids and methionine
- Disrupts gut bacteria
 - Studies with chickens, cows and pigs show overgrowth of pathogens in gut
- Disrupts cytochrome P450 (CYP) enzymes which are involved in many biological functions
- Depletes important minerals
 - Calcium, manganese, zinc, cobalt, iron,
- Likely impairs sulfate synthesis and sulfate transport

* A. Samsel and S. Seneff, Entropy 2013, 15, 1416-1463

Glyphosate: Some Biological Effects (cont’d)

- Depletes aromatic amino acids and methionine

 Tryptophan \rightarrow serotonin \rightarrow melatonin
 - Serotonin deficiency is linked to obesity, autism, Alzheimer’s disease, depression, and violent behavior
 - Melatonin controls sleep/wake cycle

 Tyrosine \rightarrow dopamine, adrenaline, melanin, thyroid hormone
 - Dopamine deficiency leads to Parkinson’s disease
 - Melanin in skin protects from UV exposure

 Methionine is an essential sulfur-containing amino acid

- Disrupts cytochrome P450 (CYP) enzymes which are involved in:
 - Activation of vitamin D, catabolism of retinoic acid
 - Bile acid production
 - Detoxifying environmental toxins
 - Stabilizing blood (hemorrhaging vs blood clots)
Major Health Warning: Avoid Genetically Modified Foods
The American Academy of Environmental Medicine (AAEM) urges physicians to advise all patients to avoid genetically modified (GM) food. They state, “Several animal studies indicate serious health risks associated with GM food.” These include:

- Infertility
- Immune problems
• Accelerated aging
• Faulty insulin regulation
• Changes in major organs and the gastrointestinal system.

Since 1996, GM plants such as soybeans and corn have had genes from bacteria and viruses forced into their DNA. Most Americans don’t realize that GM ingredients are in an estimated 70% or more of all processed foods. In 2009, the American Academy of Environmental Medicine (AAEM) stated that, "Several animal studies indicate serious health risks associated with genetically modified (GM) food," including infertility, immune problems, accelerated aging, faulty insulin regulation, and changes in major organs and the gastrointestinal system. The AAEM has asked physicians to advise all patients to avoid GM foods.[1]

Starting in 1996, Americans have been eating genetically modified (GM) ingredients in most processed foods. Why isn’t the FDA protecting us?

In 1992, the Food and Drug Administration claimed they had no information showing that GM foods were substantially different from conventionally grown foods. Therefore they are safe to eat, and absolutely no safety studies were required. But internal memos made public by a lawsuit[2] reveal that their position was staged by political appointees who were under orders from the White House to promote GMOs. In addition, the FDA official in charge of creating this policy was Michael Taylor, the former attorney for Monsanto, the largest biotech company, and later their vice president.

In reality, FDA scientists had repeatedly warned that GM foods can create unpredictable, hard-to-detect side effects, including allergies, toxins, new diseases, and nutritional problems. They urged long-term safety studies, but were ignored.

Today, the same biotech companies who have been found guilty of hiding toxic effects of their chemical products are in charge of determining whether their GM foods are safe. Industry-funded GMO safety studies are too superficial to find most of the potential dangers, and their voluntary consultations with the FDA are widely criticized as a meaningless façade.[3]

GM plants, such as soybean, corn, cottonseed, and canola, have had foreign genes forced into their DNA. The inserted genes come from species, such as bacteria and viruses, which have never been in the human food supply. Genetic engineering transfers genes across natural species barriers. It uses imprecise laboratory techniques that bear no resemblance to natural breeding, and is based on outdated concepts of how genes and cells work.[4] Gene insertion is done either by shooting genes from a “gene gun” into a plate of cells or by using bacteria to invade the cell with foreign DNA. The altered cell is then cloned into a plant.

Widespread, unpredictable changes
The genetic engineering process creates massive collateral damage, causing mutations in hundreds or thousands of locations throughout the plant's DNA.[5] Natural genes can be deleted or permanently turned on or off, and hundreds may change their behavior.[6] Even the inserted gene can be damaged or rearranged,[7] and may create proteins that can trigger allergies or promote disease.

GM foods on the market
There are eight GM food crops. The five major varieties—soy, corn, canola, cotton, and sugar beets—have bacterial genes inserted, which allow the plants to survive an otherwise deadly dose of weed killer. Farmers use considerably more herbicides on these GM crops and so the food has higher herbicide residues. About 68% of GM crops are herbicide tolerant.

The second GM trait is a built-in pesticide, found in GM corn and cotton. A gene from the soil bacterium called Bt (for Bacillus thuringiensis) is inserted into the plant's DNA, where it secretes the insect-killing Bt-toxin in every cell. About 19% of GM crops produce their own pesticide. Another 13% produce a pesticide and are herbicide tolerant.

There is also Hawaiian papaya and a small amount of zucchini and yellow crookneck squash, which are engineered to resist a plant virus.

Growing evidence of harm from GMOs

GM soy and allergic reactions
Soy allergies skyrocketed by 50% in the UK, soon after GM soy was introduced.[8] A skin prick allergy test shows that some people react to GM soy, but not to wild natural soy.[9] Cooked GM soy contains as much as 7-times the amount of a known soy allergen.[10] GM soy also contains a new unexpected allergen, not found in wild natural soy.[11] Bt corn and cotton linked to allergies

The biotech industry claims that Bt-toxin is harmless to humans and mammals because the natural bacteria version has been used as a spray by farmers for years. In reality, hundreds of people exposed to Bt spray had allergic-type symptoms,[12] and mice fed Bt had powerful immune responses[13] and damaged intestines.[14] Moreover, the Bt
in GM crops is designed to be more toxic than the natural spray and is thousands of times more concentrated. Farm workers throughout India are getting the same allergic reactions from handling Bt cotton[15] as those who reacted to Bt spray.[16] Mice[17] and rats[18] fed Bt corn also showed immune responses.

GMOs fail allergy tests
No tests can guarantee that a GMO will not cause allergies. Although the World Health Organization recommends a screening protocol,[19] the GM soy, corn, and papaya in our food supply fail those tests—because their GM proteins have properties of known allergens.[20]

GMOs may make you allergic to non-GM foods
GM soy drastically reduces digestive enzymes in mice.[21] If it also impairs your digestion, you may become sensitive and allergic to a variety of foods.
Mice fed Bt-toxin started having immune reactions to formerly harmless foods.[22]
Mice fed experimental GM peas also started reacting to a range of other foods.[23] (The peas had already passed all the allergy tests normally done before a GMO gets on the market. Only this advanced test, which is never used on the GMOs we eat, revealed that the peas could actually be deadly.)
GMOs and liver problems
Rats fed GM potatoes had smaller, partially atrophied livers.[24]
The livers of rats fed GM canola were 12-16% heavier.[25]
GM soy altered mouse liver cells in ways that suggest a toxic insult.[26] The changes reversed after they switched to non-GM soy.[27]

GMOs, reproductive problems, and infant mortality
More than half the babies of mother rats fed GM soy died within three weeks.[28]
Male rats[29] and mice[30] fed GM soy had changed testicles, including altered young sperm cells in the mice.
The DNA of mouse embryos functioned differently when their parents ate GM soy.[31]
The longer mice were fed GM corn, the less babies they had, and the smaller their babies were.[32]
Babies of female rats fed GM soy were considerably smaller, and more than half died within three weeks (compared to 10% of the non-GM soy controls).[33]
Female rats fed GM soy showed changes in their ovaries and uterus.
By the third generation, most hamsters fed GM soy were unable to have babies.
Bt crops linked to sterility, disease, and death
Thousands of sheep, buffalo, and goats in India died after grazing on Bt cotton plants after harvest. Others suffered poor health and reproductive problems.[34]
Farmers in Europe and Asia say that cows, water buffaloes, chickens, and horses died from eating Bt corn varieties.[35]
About two dozen US farmers report that Bt corn varieties caused widespread sterility in pigs or cows.[36]
Filipinos in at least five villages fell sick when a nearby Bt corn variety was pollinating.[37]
The stomach lining of rats fed GM potatoes showed excessive cell growth, a condition that may lead to cancer. Rats also had damaged organs and immune systems.[38]

Functioning GM genes remain inside you
Unlike safety evaluations for drugs, there are no human clinical trials of GM foods. The only published human feeding experiment revealed that the genetic material inserted into GM soy transfers into bacteria living inside our intestines and continues to function.[39] This means that long after we stop eating GM foods, we may still have their GM proteins produced continuously inside us.
If the antibiotic gene inserted into most GM crops were to transfer, it might create super diseases, resistant to antibiotics.
If the gene that creates Bt-toxin in GM corn were to transfer, it might turn our intestinal bacteria into living pesticide factories.
Animal studies show that DNA in food can travel into organs throughout the body, even into the fetus.[40]

GM food supplement caused deadly epidemic, Which then brought in the multi-billion dollar Anti-Depressants Era
In the 1980s, a contaminated brand of a food supplement called L-tryptophan killed about 100 Americans and caused sickness and disability in another 5,000-10,000 people. The source of contaminants was almost certainly the genetic engineering process used in its production.[41] The disease took years to find and was almost overlooked. It was only identified because the symptoms were unique, acute, and fast-acting. If all three characteristics were not in place, the deadly GM supplement might never have been identified or removed.
If GM foods on the market are causing common diseases or if their effects appear only after long-term exposure, we may not be able to identify the source of the problem for decades, if at all. There is no monitoring of GMO-related illnesses and no long-term animal studies. Heavily invested biotech corporations are gambling with the health of our
nation for their profit.
Help end the genetic engineering of our food supply
When the tipping point of consumer concern about GMOs was achieved in Europe in 1999, within a single week virtually all major food manufacturers committed to remove GM ingredients. The Campaign for Healthier Eating in America is designed to reach a similar tipping point in the US soon.
Our growing network of manufacturers, retailers, healthcare practitioners, organizations, and the media, is informing consumers of the health risks of GMOs and helping them select healthier non-GMO alternatives with our Non-GMO Shopping Guides.

Start buying non-GMO today. Help us stop the genetic engineering of our food supply.
Download your free Non-GMO Shopping Guide or ShopNoGMO iPhone App

[15] See for example "Bt cotton causing allergic reaction in MP; cattle dead," Bhopal, Nov. 23, 2005

Scientists speculate that it may be feed ingredients, primarily GMO corn, soy, and other grains, that are causing problems. This is supported by a study cited in the report, which found that when dogs and cats were fed GMO corn and soy, they experienced a variety of health issues.

The report also mentions the use of transgenic and endogenous DNA in food, which can cause health problems in animals. This is because the DNA can enter the bloodstream and enter the placenta of the fetus, as well as be transported to the fetus during birth.

The report also highlights the potential for horizontal gene transfer from GM crops to unrelated organisms, which could have serious consequences for the health of farm animals. This is because the DNA from GM crops can be transmitted to unrelated organisms, which could result in the development of new diseases or the spread of existing diseases.

The report also notes that the use of GMOs in food production is increasing, which could lead to further health problems for animals and humans. This is because the use of GMOs in food production is increasing, which could lead to further health problems for animals and humans.

The report concludes by calling for more research into the effects of GMOs on animal health, as well as for more stringent regulations to ensure the safety of GM foods.
Chances are you are feeding a pet food which contains more than one of the ... Foods pet food recall, which caused a countless numbers of companion animals to ... of Acana Dog Food confirm that utilizing grains in pet food is used more as a ... an estimated 89% of soy and 61% of corn crops are genetically engineered [2].

What’s In Your Dog Food?
Proponents say grains aren’t part of a cat or dog’s natural diet. (in the wild), and that these carb sources are contributing to obesity, disease and immune ... cause acute lethal illness and cancer in animals and humans, and are among the most ... since the 90s, our corn, soy, cottonseed and canola in the U.S. are now 90%. Carnivores were never designed to obtain the majority of their energy requirements from carbohydrates. In fact dogs, cats and ferrets have zero nutritional requirements for carbohydrates or grains. Veterinary text books agree upon this.
Yet the mass of pet foods on the market regularly consist of 50% or higher carbohydrate content.
Eons of evolution have designed carnivores to obtain energy from amino acids (protein) and fatty acids, fat from prey animals through the process of gluconeogenesis.
Other than simple economics there is no reason to challenge the eons of evolution nature has put into place when it comes to feeding carnivores like dogs, cats & ferrets.

Our animals are what they eat. And we want healthy, vibrant animals. So we pay attention to what we feed them.
Lately there have been so many pet food recalls that we have to pay more than the usual attention. Here are a few of the big issues, in a nutshell:
1.) Grain-free diets. Proponents say grains aren’t part of a cat or dog’s natural diet (in the wild), and that these carb sources are contributing to obesity, disease and immune system/allergy issues in our animals. I spoke to 3 salesmen at a recent trade show, guys who were featuring these foods at their booths, who all thought grain-free pet food was a ridiculous fad.
2.) Aflatoxin concentrations. Aflatoxins, produced by a fungus in plants, cause acute lethal illness and cancer in animals and humans, and are among the most carcinogenic substances on earth. Aflatoxins poison the liver, and their carcinogenic properties can lead to tumor formation. Last year's drought conditions resulted in dangerously high concentrations of aflatoxins in grain crops, especially corn. Tons of pet foods had to be rejected by inspectors or recalled from the shelves. Keep an eye out for more of this in 2013 as the drought continues in some areas.
3.) Genetically modified/engineered food. Banned by the entire European Union since the 90s, our corn, soy, cottonseed and canola in the U.S. are now 90% genetically modified (GM). This is not an extension of normal hybridizing or plant improvement; it involves taking genetic material from animals and other sources and splicing it into a plant's DNA. Sometimes, they are introducing a pesticide directly into the plant genetics, so that bugs eating that plant will die. So what happens when we, or our animals, eat those plants? Initial research is very disturbing; researchers are seeing significant problems with fertility, reproduction, lactation, digestion and life expectancy. The worst news is that in the U.S. there is no requirement that GM/GE foods be labeled as such, though we certainly have a right to know this before we buy. If a food is labeled 'organic', it will not contain GM/GE ingredients. You can also look for the official label of the Non-GMO Project.
4.) Dangerous byproducts. In many cases the rendered meat used in pet foods came from condemned animals that had already decayed or that were euthanized, thus giving your pet small doses of the lethal euthanizing drug Pentobarbital every time they chow down on their feed. Not to mention the body bags, microchips, dog collars and everything else thrown in with them.

MONSANTO PATENTS ON TRYPTOPHAN GENE SEQUENCING
Monsanto's patent rights over glyphosate tolerant plants. The judges argued that a patented DNA sequence which is presently incapable of performing the function for which it was patented is not ... phenylalanine, tryptophan and tyrosine .
Monsanto's patented genes. For some activists, the the plant to be able to produce tryptophan; thus the ... sequenced arabidopsis, which is a model.
Monsanto, Calgene und einigen anderen Firmen ... Title: Plant elongation factor, promoters, coding sequences and uses Specials: Change of tryptophan content of a plant .
L-Tryptophan is an amino acid, one of the building blocks of proteins. ... diseases through recombination of the vector sequences with DNA from known court by biotech seed company Monsanto for using their patented Roundup Ready.
In 2008, Monsanto plans to sell a genetically modified maize variety with high ... While gene sequences, genetically modified organisms, and methods ... tryptophan content of at least about one-tenth milligram per gram dry seed.
Safety Assessment Summary of Genuity Roundup Ready 2 Yield MON 89788 Soybean

Ongoing developments in biotechnology and molecular-assisted breeding have enabled Monsanto to develop a second-generation glyphosate-tolerant soybean product: GenuityTM Roundup Ready 2 Yield® or MON 89788 soybean (OECD Unique ID: MON–89788–1). Similar to the first generation product Roundup Ready® soybean, MON 89788 soybean will continue to provide growers with flexibility, simplicity, and cost effective weed control options. However, MON 89788 soybean and varieties containing the trait have the added potential to enhance yield and thereby further benefit farmers and the soybean industry. In 1996, Roundup Ready soybean was the first soybean product containing a biotechnology trait to be commercialized in the U.S. Roundup Ready soybean was produced by incorporation of the cp4 epsps coding sequence derived from the common soil bacterium Agrobacterium sp. strain CP4. The cp4 epsps coding sequence directs the production of the 5-enolpyruvyl shikimate-3-phosphate synthase (termed CP4 EPSPS) that is much less sensitive to glyphosate inhibition than endogenous plant EPSPS. The CP4 EPSPS renders Roundup Ready soybean tolerant to glyphosate, which is the active ingredient in Roundup agricultural herbicides. The utilization of Roundup agricultural herbicides plus Roundup Ready soybean, collectively referred to as the Roundup Ready Soybean System (RRSS), has provided significant convenience in weed control, encouraged the use of conservation-tillage, and provided substantial positive economic benefits to farmers.

MON 89788 soybean was developed by introduction of the cp4 epsps gene cassette containing a promoter that has been used in other crops such as Roundup Ready Flex cotton (Fincher et al., 2003). In addition, the transformation was based on a new technique of Agro-bacterium-mediated gene delivery to soybean meristem, where cells were induced directly to form shoots and give rise to plants (Martinell et al., 2002). This new technique allowed direct transformation of the gene cassette into elite soybean germplasm such as the Asgrow soybean variety A3244 (Paschal, 1997), which is known for its superior agronomic characteristics and high yielding properties (Tylka and Marett, 1999). Using elite germplasm as the base genetics, the superior agronomic characteristic of the A3244 soybean can be introgressed to other soybean varieties through crosses with MON 89788 soybean containing the cp4 epsps cassette. In general, MON 89788 soybean has been found to have a 4 to 7% yield advantage compared to 40-3-2 soybeans, in the same genetic background, while maintaining the weed control and crop safety benefits of the Roundup Ready Soybean System. As a result, MON 89788 soybean will be an excellent agronomic base trait for future breeding improvements and multi-trait products.